No7 For DISTRI B 770/

Initiating Formal Requirem ents Specifications With
object-orimtcd” Models

Yoko Ampo * Robyn1t. 1 utzt
NISC Corporation Jet Propulsion 1 dol’story
Tokyo, Japan California Institute of Technology

1’asadena, CA 91109
May 27,1994

Abstract

This paper reports results of aninvestigation into the suitability of object-oriented
models as an initial step in developing formal specifications. The requirements for two
criti cal system-level software modules were used astarget applications. It was found
that creating object-oriented diagrams prior to formally specifying the requirements
enhanced the accuracy of the initial formal specifications and reduced the effort required
1o produce them. However, the formal specifications incorporated some information
not found in the object-orien ted diagrams, such as the hi gh ¢ r-level strategy or goals Of

the software.

1 Introduction

Formal specification and analysis of requirements continues to gainsupport as a method for
prod u cing more reli able software. Howcever, the introduction of formal methodstoa. large
softwarc project 1s difficult, duc in pa rt to the unfamiliarity of the specification languages
and the lack of graphiics [3]. This paper reports results of aninvesti gation into the suit-
ability of Object-oricntccl modecls as aninitial step in developing formal specifications. The
requirciments for two critical systcIn-level software processes on a spacecraft, currently under
developinent were used as t arget appli cations. The results show that creating object- oriented
diagrams prior to formally specifyi ng the requireinents can enhance the accuracy of the ini -
11 a formal specificalions and reduce the effort required to produce themn. The results also
show that the formal specifications incorporated insighits into the 1Ji~llcr-level strategy or

* First author’s mailing address is Space. Station Systeins Division, NEC Corporation, 4035 lkebe-cho,
Midori-ku, Yokohamna 226, Japan. This work was performed while theauthor was a visiting rescarcher at

Jet Propulsion laboratory, Pasadena, CA91109.
1Second author’s mailing address is Dept. of Computer Science, lows State University, Ames, IA 50011.

The rescarch described in this paper was carried out by the Jet Propulsion Laboratory, California Institute
Of "Yechnology, under a contract with NASA.

Sichmitted 1o tte 2" LA M SIE50F T Symposic sin. o Uhe fovndedisng o1 Al v m <.
[:;‘1‘(/1,4:'“"";43“ , D""ir'/7[/- |

goals of the software that were not present in the object-oricmt,cd diagrams. These results
suggest that object-oricmtcc] models can be an effective first step in developing forma] re-
quirements specifications, but that carc must be taken to ensure that the underlying intent
of the software requirementsisnot lost.

In the applications described here, object-orientccl modeling offered several advantages
as an initial step in developing formal specifications. The object-oriented modeling clarified
the logical structure of the application al the level of abstraction chosen as appropriatc by
the specifiers. The graphical diagrams served as a framme upon which to base the formal
specification and guided the steps of its development. The elements of the diagraminatic
modcl often mapped in a straightforward way to clements of th ¢ formal specificatio ns. This
reduced the effort involved inproducing aninitial formal description of the requirements.

Themodeling aso offered a quick way to gainmultiple perspectives on the requirements.
The graphical diagrams made it Casy to grasp and communicate the overall problem. This
cnhianced the requirements anal ysis arid review process and led to imore accurate formal
specifications of the requirements. The object-oriclltc(l modcls aso defined the boundarics
of the cinbedded software applications. Clearly establishing the scope and interfaces of the
software prior to beginning formal specificationis reduced the time involved in producing the
initial formal specifications.

T'wo possible disadvantages of using ol)jcct-oriented modeling as afirst step in developing
formal specifications were noted in the applications. First, the object-oriented modeling
11 cthod used here did not con ci sely describ ¢ the algorithim s and strategy resid ent in the
requircinents , while the formal specificationlanguage did. In these two applications the basic
controldecisions (e. g., which rccovery actions arc appropriate inwhich failure situations?)
formed the crux of therequirements. The object-oriclltd modeling provided little insight
into these diflicult aspects of the requirements. The formal specification language better
represented the required mapping of behavior to possible situations. Sccondly, the object-
oriented modcling method used here did not rcadily describe the software’s goals (why the
software docs what it does) for goals cncompassing many objects. The formal specifications
were betier able to represent the software’s goals by providing abstraction without hiding
the information needed for understanding the rationale behind the requirements.

Fspecially for embedded, safety-critical software in along-term project, preserving the
rcasons behind the software’s tranisformations of inputs to outputs is vital. Software rcquire-
ments and software/syst,clll interfaces can be expected to evolve during development of large
systcins as addi tonal environmen tal, hardware , and operational constraints emnerge [1 1, 12].
Retaining the reasoning behind the requirement arid design choices then becomnes essential
to maintaining correct software. In the applications described here, some of this informa-
tion was present in the requirements docwments, absent in the object-oriented models, and
caplured again in the formal specifications.

Object-orimltccl necthods for analyzing requirements and design have been widely used
[4, 5]. The object-oricrdtecl modeling tool used in this work was Paradigm Plus, an imple-
mentation of OMT, the Object Modeling Tech nique [9, 14)."In the OMT" approach, threc
basic types of object-oricntc(l modecls are constructed to display the various aspects of theap-
plication. The object model represents the structural and static aspects of the system.The

1 }’e;rradigm P'lus is a regislered traderark of Protosoft, Inc.

N2

Requitements Close , Mnfolnformal OMT Formal PVS
Document Rending Diagrams Specifications
Project
Updates

Figurc 1: Using Object-Oricmtcd 1)iagrams To Initiate Formal Specifications

dynamic model describes the control aspects of the system as transitions between states. It
is presented by means of state diagrams. T'he functional model deseribes the transformation
of input values into output values. It is presenicd by means of data flow diagrams.

The formal specification language used in this investigation was that of PVS, the Pro-
totype Verification Systemn [15, 1 7].PVS is an intcgrated environment for developing and
anal yzing formal specifications inducting support toolsand a theorem prover. 1 ‘VS and its
predecessor, 1{;111)M, have beenusedio specify and verify a variety of applicationsincluding
fault-tolerant clock synchronizationalgorithms, mutual exclusion protocols, and the correct-
ness of a real-time railroad crossing controller [15, 16, 1 8]. PVS is not oncof the formal
specification systemns that have been extended o incorporate object-oricntccl methodolgics
[4, 8, 20]. However, PV S’ increasing acceptance in development environments already using
object-mod cling diagrams, as wc]] as its usefulness in multiple development phases, make
the integration of OMT and 1'VS worth investigating for possible use in wider applications.

The work described in this paper is part of alarger rescarch project whose purpose is to
usc currcent formal methods techniques to improve the quality of software in space applica-
tions. 1.ast ycar the project successful] y uscd I'VS to specify the designand requircments
for portions of the Space Shuttle control system [6]. OM1" was used to assist in the reverse
engincering of a portion of those requirements [1].

Thestudy described here is part of the project’s cffort to evaluate experimentally the
feasibility of object-oriented modeling as a bridge between traditional enginecring approachces
torequiremnents specification and the morerigorous specification ancl analysis available with
formal methods.

2 A pproach

T'he approach taken in thisstudy was to select, based onthe criteria in Section 3, two critical
software processcs from a project currently in the preliminary design phase, to create both
object-oricl]tcd modclsand formal specifications for cach,and to evaluate the usefulness of
the object-cmicl]tccl models as an initial step in developing the formal specifications of the
two applications. }ig. 1 summarizes the process. ‘1 ‘herequirements specifications which
were uscd as input to the study were documented in kn glish and flowcharts [7]. The PVS
specifications were parsed and typecheckedto detect errors and inconsistencies.

T'wo mecasures were used to analyze the suitability of object-orien ted modelin g as a first
stepin forma specification.

(1) Phenumber and type of mappings betweenthe object-oriented modecls and the formal
specifications were recorded. Determining the fraction of OMT elements that were mapped
tothe PVS specifications gives a measure of how tight a linkage exists between the two
representations. Tablesand a discussion of these results appcarsin Section 3.

(2) The number and types of issues found were recorded for both the object-oriented
modcling and the forinal specification process. This record shows whew inaccuracics in the
documented requirements wered i scovered. The types of issues logged were logical errors,
unstated assumptions, incomplete requirements, inconsistent documentati on, inconsistent
logic, nmprecise terminology, and other questions.

Theratio of issues fount] in the process of OM'T' modeling to issues found in the process
of PVS specification indicates the cffectiveness of OMT modeclinig at identifying issues in the
requi rer n cnts prior to the developmen t of formal specifi cations.

Since the applications were still under development at the time of this study, most issues
identified here were still being analyzed by the development team or had been resolved.
Other issues involved undocumented details or assumptions regarding systern interfaces,
failu rc seen arios, and terminology. It is our hope that our feedback to the development team
regarding these issues repaid their generous willingness to review our preliminary work and
answer our technical questions.

3 App lications

T'wo applications were sclected for the rescarch deseribed here based 011 the following three
criteria. The first criterion was that the applicalions chosen be portions of the require-
ments of a large, embedded software system currently under development. The intent of the
stud y was to evaluatle the usc of object-oricntccl modeling to initiate formal specifications in
realistic forward- engincering applications, rather than In reverse-engineering applications.
The sccond criterion was that the requirements be for safety-critical software, meaning that
the failure of the software could jeopardize the spacceraft systemor the mission [1 O]. The
on-board, system-level software which responds autonomously to a detected spacecraft {ail-
urc was targeted as a domainin which the extra assurance possible via formal specification
and verification is merited. T'his software involves logical] y complex, safety-critical modules
which must interface correctly with nurmnecrous subsystems subject to real-time constraints
[1 3]. The third criterion for sclecting the applications was that the two software processes
be dissimilar.

The first process sclected for analysis (Safe-state Responsc) is responsible for moving
the spacecraft to a safe state from whatever state it happens to beinupon invocation.
What constitutes a safe state varies with the mission phasc (e.g., distance from the sun),
the criticality of the current activities (e.g., whether a inancuver is underway), the hard-
warc components currently in v s ¢ (e.g., whether a switch to backup units has occurred),
etc. Ingeneral, the software module must command the spacecraft to a safe attitude (c)g.,
where instrument sensors arc shaded from the sun), minimize the power consumption, cancel
non-essential activities, and reconfigure hardware components to maximize the likelihood of

achieving {wo- way communication with the ground. This software is called Process A in the
paper. Iigs.2 and 3 in the Appendix are simplificd sample diagrams for Process A.

The second process chosen (Fault-Recovery Fixecutive)is asmall software executive that
at cach cycle selects which request forrccovery response(s) to honor. ‘Jhe selection re-
quirements involve a preemptive, fixed-priority scheme. Currently executing processes, if
preempled, may be restarted under certain conditions, but not from the point of precnp-
tion. Additional requircments relating to special mission scenarios complicate the design.
This software is called Process B in the following discussion. I'igs. 4 and & inthe Appendix
arc simplificd sample diagrams for I'recess I3.

Yor }'recess A, OMT' diagrams were first created and the PVS specification was then
developed. Process A is alarge, but straightforward, set of activities with few data dep en-
dencics. For Process BB, the formal specification was written first, then the OMT diagrams
were devcloped, and finally the PVS specification was updated. Since Process 3 is very
logic-dependent and dynamic, it is wdl-suited to PVS specification. The PVS specification
was developed before the OMT diagrams for Process B in order to quickly clarify a logical
clam in {he documentati), - a byproduct of the decision to write the PVSspecification first
for Process I3 was that we were thus better able to measure the added benefit of the OMT
diagrams.

The applications were not chosen to address the issue of uniqueness, i .c., whether the
advantages found in using object-oricntc.ci analysis of formalinethods distinguish them from
other requirements analysis methods. The focus was instcad on whether, given that formal
specification is to becuscedon a specific project, the prior crcation of object-c)ricntccl models
is uscful.

4 Analysis
4.1 Mapping OMT Diagrams to VS Specifications

Three object- oriented models were created for cach of Processes A and B: object diagrams,
state diagrams, and dataflow diagrains. (T1e subsystem comnponents were shown as classes
rather than objects because dual-string redundancy of many ¢OIMP onents is required. How-
cver, the components arc all referred to as objects here since redundancy issues have not yet
been addressed.)

‘Jable 1 summarizes onc mcasure of how tight a linkage exists between the object-oriented
modcls and the formal specifications. The first columnrecords the number of objects in the
object diagram whose attributes were mapped to PVStype definitions. '1‘hesccon ¢l column
rccords the number of transitions in the main object’s state diagram which mapped directly
to 1'VS functions. The third and fourth columns show those OMT elements which did not
map to associated clements in the PVSspecifications. *J ‘he fifth col umn contains a count of
the type definitions in the I'VS specification which were not attributes of any object in the
OM'T" diagrams. The sixth column records the axioms or function definitions in the PVS
specification whichwere not present in the OMT state diag rams.

Yor P rocess A, 14 of 33 OMT clements were mapped to the PVS specification. Ior
Process BB, 1(1 of 12 were. The sinall fraction of mapped OMT elements to allOMT clements

FElements in OMT Elements in OM1" Not Flements in PVS But
Divectly Mapped To PVS — Dirvectly Mapped To 1’ VS Not in OMT
Objects Transitions Objects ‘Jransitions Types Functions/Axioms
Process A @ 7 7 18 1 2 ?
Process B: 3 7 0 2 4 20
‘Jolal: 10 14 18 3 6 22

Table 1: Mapping OMT Ilements to PVS Specifications

for Process A is the resull of 4310 ction that occurred in the mapping from M7 attributes

ol objects 1o PVS type definitions.

In general, attributes inthe OMT object diagrams tended o map readily to PVS types
withthe addition of some abstraction in bothapplications. Similarly, the transitions inthe
state diagrams tendedto map to the PVS funclions, but did not routinely map onc-to-one.
Thisis partly due tothe fact that cachstate diagram models only a single object while many
of the functions at the level of abstraction chosen involve multiple objects. It is also due to
the additional functions and axioms nceded inl VS to build up a rigorous and consistent
description (e.g., functions to map from onc sct 10 another, existence axioms, etc.).

The PVS functions {ended to provide more insight into the requirements tian did the
stale diagrams. Many states inthe diagrams were of nccessity collapsed collections of states,
Conscquently, the content of the transition between any two states varied greatly depending
on exactly whichof the collection of states the system was in. Theinterpreted PVS function
corresponding to the transition containcdthe cases and conditions neccssary to understand
what the underlying rcquircment entailed. in these cases the state diagrams provided in-
formation shout the correct sequencing of functions in the 1'VS theory, butnot about the
strategy required to always rcturnthe spacecraft to asafc state from fail od states.

For 1’rocess 11, where the object classes were software processes (fault detectors and
responscs) rather than hardware components, the state diagrams matched the behavioral
requirements much more closcl y. ‘J ‘transitions involved single objects and single events at the
level of detail chosen for Process 3. Thus, the high-level strategy and goal of Process I3 was
discern able from the () M'T' di agrams.

A dataflow diagram was crcated last for cach application]. T'hed at aflow diagram for
1 ‘recess A contributed little additional perspective, clue to several application-dependent
factors. Process A is unusua in that it doesn't storestate information from one cycle to the
next cycle internally Lo the module, nor does it pass il”ltcl’ mediate! results from one function
toanother within the process. 1t may output as I-JJan y as 80 comman ds to other subsystemns
with out any subscquent USC Of thosc outputs by other local funclions. Process BB, on the
other hand, both saves state informationinternally between cycles and passes intermediate
valucs bet ween functions. T'he dataflow diagram for Process 3 was useful inrepresenting
the data dependencies of the fun ctions.

The right-hand side of Table1shows that some ¢l ementsin the PVS were not present
inthe OM» diagrams, especially for Process B. The logic in Process BB that detertnines and
services the highest priority cligible request, canicelling execution of all others, is complex. 1ts

6

Process A Process I3
Reading OMT PVS | Reading OMT PVS

Logical crrors 0 0 0 0 o “ 1

Unstated assumplions 3 | 0 4 | 2
11”1 complete requirements) 0 I ! 0 3
Inconsistent documentation 0 3 0 0 0 3
Inconsistent logic 3 0 0 0 0 0
Linprecise terminology 0 5 0 0 0 !

Other questions, resolved 4 o 0 ! 0 2
Total 15 14] G 1 12

Table 2: Issues Identificd In Development of OMT and IPVS Specifications

for 1-1a) specification require.d a sct of detailed, Step-by-slcl) axioms as well as many functions
cstablishing various mappings between subsets of requests and subscts of services. While this
level of detailis neeessary for the future verification of the requirements, it discourages casual
review. The OMT di agramns provided a better overview of the process’ requirements. What
thcy did not show were the underlying assumptions and constraints that any preemptive
designmust satisfy. However, creating OM'T diagrams before the PVS description for Process
B probably wouldhave simplified the creation of the PVS specification by enforcing a more
gradualand orderly development of it, by encouraging a consistent level of abstraction in the
PVS, and by reducing iterations (1UC to misunderstan ding the requirements docurnentation.

4 .2 ldentifying Requirements Issues with OMT

T'he construction of OMT' diagrams prior to the specification of the requirements in PVS
for] ’rocess A contributed to accurate 1 VS requirements specifications. T'able 2 summarizes
the issues identified during the process of rcading the available requirements docurmn entation,
developing object-oriented models of the requirements, and creating formal specifications of
the requirements for the two processes. The first co lumn catalogs those issues that were
identified during a close reading of the requirements specifications docum ents. This close
rcading was akin to the level of thoroughness performed as preparation for participating in
a formal inspection

For Process A, the high ratio of issues foundin OMT modcling to issucs found in the
process of PVS specification suggests the effectiveness of the OMT modcling in clarifying
the requirements prior to forma] specification. 13y identifying ambiguiticsand assumptions
before the type definitions and function signatures were devcloped in PVS, less effort was
required to produce an accurate PVSspecification. Vor Process 13, the low ratio of issues
found in OMT modeling to issues found informal specification is due to the PVS speci-
fication preceding the OMT modcling. InProcess Bmany issues and ambiguities in the
requiremnents documentation were still unresolved when the forral specification process be-
gan. This resulted in more corrections and updates to the forma] specification.

N ot e that the results may show a shifting of the requirements analysis to the OMT

process rath er than an overal 1 reducti on incffort. Yor I'recess A, all the issues identified
during the OM'I' diagrams would have been identified during the process of creating the
PVS specifications, had the object modceling not been done. Similarly, for Process 1, al
the issues identificd during the formal specification would probably also have been identified
during the OMT" modeling, hadil occurred first.

Infact, most of the issues (half the issues inProcess A and one-third inProcess B)first
came up during the close rcading of the document. While the object modeling and PVS
specifications both clarified our understanding of theintendedrequirements, many of the
issues identified later were actually refinements or conscquences of items noted by the initial
closc reading.

Yor Process A the process of constructing the OMI' diagrams, interspersed with conversa-
tions with the development team, enhanced the accuracy of our understanding of the system
and provided answers to many of the questions posed during the initial closc reading of the
requirements documents. 1 ‘he diagrams were usceful as a reference poin t for discussion and
provided a convenient way to define the scope of the applications ant] the component picces
that would be used to specify it. Many of the cases of imprecisc terminology, inconsistencics
between text and tables, and unstatcd assumptions were resolved at this point.

Ior I’ rocess BB, the OMT* diagrams also provided clarification, cven after the formal
speci fication had been developed. in particular, a, design dilemma (whether or not to restart
a canccled child process when its parent process had already completed execution) was
represented most clearly by a st ate di agram. The state diagram’s similarity to the standard
process state- transition diagram provided insight into why the proposed behavior might be
over] y complex [19J.

The OMT diagrams provided the bascline from which to begin the formal specification
of 1’rocess A and guid ed its development. The elements of the diagrams were often directly
translated into the types and functions of the initial I'VS specifications. Yor bothiapplications
the added benefit of the PVSspecification was that it enforced the resolution of the remaining
imprecise or ambiguous items in the requirements. I’he documentation and eventhe OM’J
modecling at times allow several interpretations; the PVS specification, due to its rigor, is
cither accurate or inaccurate.

5 Conclusions and IFPuturc Work

Inthe applications investigated here, the object-oriented modeling tended to reflect the
requirement engincers’ view of t he embed dedsoft ware. The attributes assigned to classes
of objects translated readily into PVS data type definitions. The transitions in the state
diagrams often corresponded in a straightforward manner to PVS functions. The dataflow
di agrains showed the data d epenidencics among the functions. The OMT' diagrams thus
served insomec measure to guide the development of the formal specifications and the initial
selection of the level of abstraction.

The results demonstrate that the development of object-oriented models can be auscful
first step in creating a formal specification. The concise graphical rcpresentationsand Fuglish
notations in the object- oriented modclsmade it easy to communicate an understanding of the
systemand to confirm the accuracy of the models. Many instances of ambiguousterminology,

incomplete requirem ents, and unstated assumptions were identified during the development
of the models in Process A, leading to more accurate, initial formal specifications. Producing
the OMT diagramns first essentially eliminated the need to update the PVS specification due
to errors in understanding of the documented requircinents. (Iterations of the PVSand OMT
still occurred as proofs of claims were developed.) In Process | 3, where PVS specifications
were writlen prior to the corresponding OMT' diagrains, the formal specifications had to be
rewritten severaltimes to ¢liminate requirements misun derstandings and errors.

For Process A, the PVS specification contained morce requirements inforrmation than the
OMT diagrams iniwo ways: (1) Somec of the functions represented strategics encompassing
several objects rather than transitions on a single object and hence provided more insight
into why the requirements were stated as they were, and (2) the PVS abstracted from an
abundance of objects andtheir attributes and operations in OMT to a Iligller-level represen-
tation of the required recovery strategies. Thus, the PVS specification reduced the reliance
on the structural view of the system and provided more insight into the underlying goals
(c.g., reduce power, improve uplink capability, cancelnoneritical activitics).

IFor Process 11, in which there were fewer and siimpler objects, less state information, and
morc dynamic behavior, the OMT' diagrams provided a good overview. However, because the
OMT diagrams did not represent the algorithm which was the crux of therequirement (what
tradeofls to make when multiple requests for fault responses occur), the PVS specification
offered insights into the reasons bchind the requirements that were not represented in the
OMT" diagrams,

Future directions of research includeinvestigating the formal specificationand verification
of software safety propertics as a way to improve the requireinents and design analysis
process. Ongoing work in formalizing themapping of object-oriented clements to formal
sp ccifications will provide a framework inwhichtotest the broader applicability of the
results presented in this paper [2, 8. Related work to automate the mapping of OMT
diagrams to I’'VS spccifications has generated interest [1).

The results p resented here suggest that the USC of OM'I" diagrams as a first step in
producing formal specifications may cnhancethe accuracy of the initial forma] specifications
arid reduce the effort requiredto produce’ them. The results presented here may also suggest
limits to the uscfulness, or at lcast testimony to the difficulty, of such formal snappings. In
both applications the PVS specification provided insights into the underlying intent of the
software requirements that wasnotl obvious inthe OM'T'models. Any usc of object-oriented
modcling as a first slep towards formal specifications will need to ensure that the Iig;licr-level
intent of the software requirements is retained in the process.

6 Acknowledgments

We thank Rick CovinglarahGavit, 1 Javid H amilton, Jolin Kelly, and Al Nikora for
helpful discussions.

9

planned
activity

7 Appendix

activity status

activate
suspend command
] stop subsystem
/ telemetry mode
control set fault inod o
configure downlink
fault activated/cancelled by safe state /
recovery response
executive attitude
enabla status stibsystem
active status
request status mode
critical activity . attitudo
critical attitude configure to safestate
stop burns
enable go to homebase
disable
blef i J request
ggzbb enabled/disabled by clear request . ']
activato stablish downlink/uplink
command radio subsystem
cancel
uplink configuration
. downlink configuration
roquested by reduce power
set emergency configuration

[monitor r

science
instruments

offlon

power off
power on

Fig 2, Object Diagl;amk’r Procoss A (Safe Stato Response)

enablo >
reqpcsl)
activate
stop
) stop bur
power of) >
¢ to honx | 3@)
set [Jt node
setermery | Cylconfigura | n)
power 01 >
monitor enable/ fault safo planned con¥nand attitudo radio scicnce
disablo recovery state activity subsystern subsystem gubsystern Instrurents
command executive response

Fig, 3 Event Tracefor Process A (Safe State Response)

10

Fault

Recovery
Executlive
schedules
- ./
Monitor
orutb;xtror{ablo statys request-

aclive status
prionitty
activate
enable
disatbike

enabled/disabled by

enable/
disablo
command

aclivates/cancols

I

Responsa

P onablo status
aclive status
requost status

enablo
disable
requost

clear request
activate
cancel

cnatJ!cd/disabled by

Fig 4. Object Diagram for Process B (Fault Recovery Executive)

Monitor

®

Inactive)(activate
™~
disablod J
. \
disable enable
enabled
Inactive request-
. 3 clear request-
Y ¥
complcte\ caneel
\ \ A7

active

)[/ ready]

activate

requestresponsesfout-enabled)

active

read& check values

~
N/

Fig . StateDiagranis fOr Process B (Fault Recovery Exec utive)

11

References

(1]

[2]

[4]

12)

(13)

[14]

B. 1. C. Cheng and B. Aucrnhcimer, «Applying Formal Methods and Object-Oriented
Analysis to Ixisting Ilight Software,” I’roc 18th Annual Software Iing Workshop 1993,
NASA /Goddard Space Flight Center, Sk, Dec 1993, 274- 282.

5. Cusack and G. von Bochmann, “Jormal Object-Oriented Methods in Communication
Standards,” OOPS Messenger, 3,2, April, 1992, pp. 7- 8.

D. de Champeaux, A. J. Bacr, B. Bernsen, A. R. Korncofl, 1. Korson, and 1. S. Tkach,
«Sirategics for Object-Oriented Technology Transfer, Panel” O0PSLA 98, in ACM SIG-
PLAN Notices, 28, 10, Oct 1993, 437-447.

1. de Champcaux, =. lea, and . Faure, Object-Oriented System Development. Addison-
Wesley, 1993.

. G. Firesmith, Object-Oriented Requirements Analysis and Logical Design. Wiley, 1992.

Jormal Mcthods Demonstration I’roject Jor Space Applications, Phase T Case Study: Space
Shutlle Orbit DAP Jet Select, IP1, 1SC, and LARC, December 1993.

S. Gavit, Cassini Orbiter Junctional Requirements Book, System Jaull Protection Algorithms,
Prel, Jan 94 and Faull Protection Requirements, Itev. A, March 94.

. Holt and D. deChampeaux, “A Jramework for Using Formal Mcthods in Object-Oriented
Software Development,” QOPS Messengcr, 3,2, April 1992, pp. 9- 10.

J. C. Kelly, 3. S. Sherif, R. Covington, 1. Shaw, and G. Welz, Object-Oriented Soflware
Development, Jet Propulsion Laboratory D-11374, Fall, 1993.

N. G. Leveson, “Software Safety in mbedded Computer Systems,” Commun ACM, 34, 2,
¥eb 1991, 35 46.

R. Lutz, “Analyzing Software Requirements Frrors in Safety-Critical, mbedded Systems,”
Proc 1111 Internat Symp on Requirements Iing. 1131 Computer Society Press, 1993, 126-
133

R. Talz “Targeting Safety-Related Yrrors During Softwarce Requirements Analysis,” Proc Ist
ACM SIGSOFT Symp on the Foundations of Software I'mmg in Software Ingineering Notes,
18, 5, Dec 1993, 99- 106.

R. Tutz and 3 S. K. Wong, “Detecting Unsafe }rror 'y Schedules,” IEEE Trans
Software Ing, 8 8, Aug 1992, 749- 760.

J. Rumbaugh, M. Blaha, W. Premarlani, ¥ Bddy, and W Lorensen, Object-Oriented Model-
ing and Design. Prentice Hall, 1991.

J. Rushby, “Formal Methods and Digital Systems Validation for Airborne Systems,” SRI-
361,-93-07, Nov 1993.

3. M. Rushby and 1. von Henke, “Formal Verification of Algorithms for Critical Systems,”
JIBE Trans on Software Fng, 19,1, Jan 1993, 13- 23.

12

[17] N. Shankar, S. Owre,and J. M. Rushby, The PVS Specification and Verification System, SR,
March, 1993.

[18] N. Shankar, S. Owre,and J. M, Rushby, A Tutorial on Specificationand Verification Using
PVS,SRI, March, 1993.

[19] A. S.Vanenbaum. Modern Operating Systems. Prentice hall, 1992.

[20] J. M. Wing. “A Specifier’s Introduction to Yormal Mecthods,” 1EEE Computer, 23, 9, Sept
1990, 8- 24.

13

